Finding and Counting Permutations via CSPs

Author:

Berendsohn Benjamin Aram,Kozma László,Marx Dániel

Abstract

AbstractPermutation patterns and pattern avoidance have been intensively studied in combinatorics and computer science, going back at least to the seminal work of Knuth on stack-sorting (1968). Perhaps the most natural algorithmic question in this area is deciding whether a given permutation of length n contains a given pattern of length k. In this work we give two new algorithms for this well-studied problem, one whose running time is $$n^{k/4 + o(k)}$$ n k / 4 + o ( k ) , and a polynomial-space algorithm whose running time is the better of $$O(1.6181^n)$$ O ( 1 . 6181 n ) and $$O(n^{k/2 + 1})$$ O ( n k / 2 + 1 ) . These results improve the earlier best bounds of $$n^{0.47k + o(k)}$$ n 0.47 k + o ( k ) and $$O(1.79^n)$$ O ( 1 . 79 n ) due to Ahal and Rabinovich (2000) resp. Bruner and Lackner (2012) and are the fastest algorithms for the problem when $$k \in \varOmega (\log {n})$$ k Ω ( log n ) . We show that both our new algorithms and the previous exponential-time algorithms in the literature can be viewed through the unifying lens of constraint-satisfaction. Our algorithms can also count, within the same running time, the number of occurrences of a pattern. We show that this result is close to optimal: solving the counting problem in time $$f(k) \cdot n^{o(k/\log {k})}$$ f ( k ) · n o ( k / log k ) would contradict the exponential-time hypothesis (ETH). For some special classes of patterns we obtain improved running times. We further prove that 3-increasing (4321-avoiding) and 3-decreasing (1234-avoiding) permutations can, in some sense, embed arbitrary permutations of almost linear length, which indicates that a sub-exponential running time is unlikely with the current techniques, even for patterns from these restricted classes.

Funder

ERC

DFG

Freie Universität Berlin

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization with Pattern-Avoiding Input;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10

2. Parity Permutation Pattern Matching;Algorithmica;2024-05-22

3. Parity Permutation Pattern Matching;WALCOM: Algorithms and Computation;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3