Correlation Clustering in Data Streams

Author:

Ahn Kook Jin,Cormode GrahamORCID,Guha Sudipto,McGregor Andrew,Wirth AnthonyORCID

Abstract

AbstractClustering is a fundamental tool for analyzing large data sets. A rich body of work has been devoted to designing data-stream algorithms for the relevant optimization problems such as k-center, k-median, and k-means. Such algorithms need to be both time and and space efficient. In this paper, we address the problem of correlation clustering in the dynamic data stream model. The stream consists of updates to the edge weights of a graph on n nodes and the goal is to find a node-partition such that the end-points of negative-weight edges are typically in different clusters whereas the end-points of positive-weight edges are typically in the same cluster. We present polynomial-time, $$O(n\cdot {{\,\mathrm{polylog}\,}}n)$$ O ( n · polylog n ) -space approximation algorithms for natural problems that arise. We first develop data structures based on linear sketches that allow the “quality” of a given node-partition to be measured. We then combine these data structures with convex programming and sampling techniques to solve the relevant approximation problem. Unfortunately, the standard LP and SDP formulations are not obviously solvable in $$O(n\cdot {{\,\mathrm{polylog}\,}}n)$$ O ( n · polylog n ) -space. Our work presents space-efficient algorithms for the convex programming required, as well as approaches to reduce the adaptivity of the sampling.

Funder

H2020 European Research Council

Royal Society

Yahoo

Division of Computing and Communication Foundations

Australian Research Council

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Understanding the Cluster Linear Program for Correlation Clustering;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10

2. Optimal Multi-pass Lower Bounds for MST in Dynamic Streams;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10

3. Rounds vs. Communication Tradeoffs for Maximal Independent Sets;SIAM Journal on Computing;2024-03-25

4. Distributed Symmetry Breaking on Power Graphs via Sparsification;Proceedings of the 2023 ACM Symposium on Principles of Distributed Computing;2023-06-16

5. CoIn: Correlation Induced Clustering for Cognition of High Dimensional Bioinformatics Data;IEEE Journal of Biomedical and Health Informatics;2023-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3