Connected k-Center and k-Diameter Clustering

Author:

Drexler Lukas,Eube Jan,Luo Kelin,Reineccius Dorian,Röglin Heiko,Schmidt Melanie,Wargalla Julian

Abstract

AbstractMotivated by an application from geodesy, we study the connected k-center problem and the connected k-diameter problem. The former problem has been introduced by Ge et al. (ACM Trans Knowl Discov Data 2(2):1–35, 2008. https://doi.org/10.1145/1376815.1376816) to model clustering of data sets with both attribute and relationship data. These problems arise from the classical k-center and k-diameter problems by adding a side constraint. For the side constraint, we are given an undirected connectivity graphG on the input points, and a clustering is now only feasible if every cluster induces a connected subgraph in G. Usually in clustering problems one assumes that the clusters are pairwise disjoint. We study this case but additionally also the case that clusters are allowed to be non-disjoint. This can help to satisfy the connectivity constraints. Our main result is an $$O(\log ^2k)$$ O ( log 2 k ) -approximation algorithm for the disjoint connected k-center and k-diameter problem. For Euclidean spaces of constant dimension and for metrics with constant doubling dimension, the approximation factor improves to O(1). Our algorithm works by computing a non-disjoint connected clustering first and transforming it into a disjoint connected clustering. We complement these upper bounds by several upper and lower bounds for variations and special cases of the model.

Funder

Rheinische Friedrich-Wilhelms-Universität Bonn

Publisher

Springer Science and Business Media LLC

Reference43 articles.

1. Ge, R., Ester, M., Gao, B.J., Hu, Z., Bhattacharya, B.K., Ben-Moshe, B.: Joint cluster analysis of attribute data and relationship data: the connected k-center problem, algorithms and applications. ACM Trans. Knowl. Discov. Data 2(2), 1–35 (2008). https://doi.org/10.1145/1376815.1376816

2. Permanent Service for Mean Sea Level (PSMSL): Tide gauge data. http://www.psmsl.org/data/obtaining/. Accessed 03 Feb 2022

3. Holgate, S.J., Matthews, A., Woodworth, P.L., Rickards, L.J., Tamisiea, M.E., Bradshaw, E., Foden, P.R., Gordon, K.M., Jevrejeva, S., Pugh, J.: New data systems and products at the permanent service for mean sea level. J. Coastal Res. 29, 493–504 (2013)

4. Hsu, W., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discret. Appl. Math. 1(3), 209–215 (1979)

5. Hochbaum, D.S.: When are NP-hard location problems easy? Ann. Oper. Res. 1(3), 201–214 (1984)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3