On the Fine-grained Parameterized Complexity of Partial Scheduling to Minimize the Makespan

Author:

Nederlof JesperORCID,Swennenhuis Céline M. F.ORCID

Abstract

AbstractWe study a natural variant of scheduling that we call partial scheduling: in this variant an instance of a scheduling problem along with an integer k is given and one seeks an optimal schedule where not all, but only k jobs, have to be processed. Specifically, we aim to determine the fine-grained parameterized complexity of partial scheduling problems parameterized by k for all variants of scheduling problems that minimize the makespan and involve unit/arbitrary processing times, identical/unrelated parallel machines, release/due dates, and precedence constraints. That is, we investigate whether algorithms with runtimes of the type $$f(k)n^{{\mathcal {O}}(1)}$$ f ( k ) n O ( 1 ) or $$n^{{\mathcal {O}}(f(k))}$$ n O ( f ( k ) ) exist for a function f that is as small as possible. Our contribution is two-fold: First, we categorize each variant to be either in $${\mathsf {P}}$$ P , $${{\mathsf {N}}}{{\mathsf {P}}}$$ N P -complete and fixed-parameter tractable by k, or $${\mathsf {W}}[1]$$ W [ 1 ] -hard parameterized by k. Second, for many interesting cases we further investigate the runtime on a finer scale and obtain run times that are (almost) optimal assuming the Exponential Time Hypothesis. As one of our main technical contributions, we give an $${\mathcal {O}}(8^kk(|V|+|E|))$$ O ( 8 k k ( | V | + | E | ) ) time algorithm to solve instances of partial scheduling problems minimizing the makespan with unit length jobs, precedence constraints and release dates, where $$G=(V,E)$$ G = ( V , E ) is the graph with precedence constraints.

Funder

European Research Council

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3