Limitations of the Impagliazzo–Nisan–Wigderson Pseudorandom Generator Against Permutation Branching Programs

Author:

Hoza William M.,Pyne Edward,Vadhan Salil

Abstract

AbstractThe classic Impagliazzo–Nisan–Wigderson (INW) pseudorandom generator (PRG) (STOC ‘94) for space-bounded computation uses a seed of length $$O(\log n \cdot \log (nw/\varepsilon )+\log d)$$ O ( log n · log ( n w / ε ) + log d ) to fool ordered branching programs of length n, width w, and alphabet size d to within error $$\varepsilon $$ ε . A series of works have shown that the analysis of the INW generator can be improved for the class of permutation branching programs or the more general regular branching programs, improving the $$O(\log ^2 n)$$ O ( log 2 n ) dependence on the length n to $$O(\log n)$$ O ( log n ) or $${\tilde{O}}(\log n)$$ O ~ ( log n ) . However, when also considering the dependence on the other parameters, these analyses still fall short of the optimal PRG seed length $$O(\log (nwd/\varepsilon ))$$ O ( log ( n w d / ε ) ) . In this paper, we prove that any “spectral analysis” of the INW generator requires seed length $$\begin{aligned} \Omega \left( \log n\cdot \log \log \left( \min \{n,d\}\right) +\log n\cdot \log \left( w/\varepsilon \right) +\log d\right) \end{aligned}$$ Ω log n · log log min { n , d } + log n · log w / ε + log d to fool ordered permutation branching programs of length n, width w, and alphabet size d to within error $$\varepsilon $$ ε . By “spectral analysis” we mean an analysis of the INW generator that relies only on the spectral expansion of the graphs used to construct the generator; this encompasses all prior analyses of the INW generator. Our lower bound matches the upper bound of Braverman–Rao–Raz–Yehudayoff (FOCS 2010, SICOMP 2014) for regular branching programs of alphabet size $$d=2$$ d = 2 except for a gap between their $$O\left( \log n \cdot \log \log n\right) $$ O log n · log log n term and our $$\Omega \left( \log n \cdot \log \log \min \{n,d\}\right) $$ Ω log n · log log min { n , d } term. It also matches the upper bounds of Koucký–Nimbhorkar–Pudlák (STOC 2011), De (CCC 2011), and Steinke (ECCC 2012) for constant-width ($$w=O(1)$$ w = O ( 1 ) ) permutation branching programs of alphabet size $$d=2$$ d = 2 to within a constant factor. To fool permutation branching programs in the measure of spectral norm, we prove that any spectral analysis of the INW generator requires a seed of length $$\Omega \left( \log n\cdot \log \log n+\log n\cdot \log (1/\varepsilon )\right) $$ Ω log n · log log n + log n · log ( 1 / ε ) when the width is at least polynomial in n ($$w=n^{\Omega (1)}$$ w = n Ω ( 1 ) ), matching the recent upper bound of Hoza–Pyne–Vadhan (ITCS 2021) to within a constant factor.

Funder

Division of Computing and Communication Foundations

Simons Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3