Online Clique Clustering

Author:

Chrobak Marek,Dürr Christoph,Fabijan Aleksander,Nilsson Bengt J.ORCID

Abstract

Abstract Clique clustering is the problem of partitioning the vertices of a graph into disjoint clusters, where each cluster forms a clique in the graph, while optimizing some objective function. In online clustering, the input graph is given one vertex at a time, and any vertices that have previously been clustered together are not allowed to be separated. The goal is to maintain a clustering with an objective value close to the optimal solution. For the variant where we want to maximize the number of edges in the clusters, we propose an online algorithm based on the doubling technique. It has an asymptotic competitive ratio at most 15.646 and a strict competitive ratio at most 22.641. We also show that no deterministic algorithm can have an asymptotic competitive ratio better than 6. For the variant where we want to minimize the number of edges between clusters, we show that the deterministic competitive ratio of the problem is $$n-\omega (1)$$n-ω(1), where n is the number of vertices in the graph.

Funder

Malmö University

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,General Computer Science

Reference20 articles.

1. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3), 89–113 (2004)

2. Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. J. Comput. Biol. 6(3/4), 281–297 (1999)

3. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)

4. Charikar, M., Chekuri, C., Feder, T., Motwani, R.: Incremental clustering and dynamic information retrieval. SIAM J. Comput. 33(6), 1417–1440 (2004)

5. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. In: Foundations of Computer Science, 2003. Proceedings. 44th Annual IEEE Symposium on, pp. 524–533. IEEE (2003)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review of Clustering Technology and Its Application in Coordinating Vehicle Subsystems;Automotive Innovation;2023-01-17

2. On the Clique Partitioning of a Graph;Journal of Communications Technology and Electronics;2022-12

3. Interpretable fuzzy clustering using unsupervised fuzzy decision trees;Information Sciences;2022-09

4. Correlation Clustering;Synthesis Lectures on Data Mining and Knowledge Discovery;2022-03-08

5. Analysis of Key Factors Affecting Undergraduate Entrepreneurship Ability from a Big Data Perspective;Wireless Communications and Mobile Computing;2022-01-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3