Faster Graph Coloring in Polynomial Space

Author:

Gaspers Serge,Lee Edward J.ORCID

Abstract

AbstractWe present a polynomial-space algorithm that computes the number of independent sets of any input graph in time $$O(1.1389^n)$$ O ( 1 . 1389 n ) for graphs with maximum degree 3 and in time $$O(1.2356^n)$$ O ( 1 . 2356 n ) for general graphs, where n is the number of vertices in the input graph. Together with the inclusion-exclusion approach of Björklund, Husfeldt, and Koivisto [SIAM J. Comput. 2009], this leads to a faster polynomial-space algorithm for the graph coloring problem with running time $$O(2.2356^n)$$ O ( 2 . 2356 n ) as well as an exponential-space $$O(1.2330^n)$$ O ( 1 . 2330 n ) time algorithm for counting independent sets. Our main algorithm counts independent sets in graphs with maximum degree at most 3 and no vertex with three neighbors of degree 3. This polynomial-space algorithm is designed and analyzed using the recently introduced Separate, Measure and Conquer approach [Gaspers & Sorkin, ICALP 2015]. Using Wahlström’s compound measure approach, this improvement in running time for small degree graphs is then bootstrapped to larger degrees, giving the improvement for general graphs. Combining both approaches leads to some inflexibility in choosing vertices to branch on for the small-degree cases, which we counter by structural graph properties.

Funder

Australian Research Council

Australian Government Research Training Program

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3