Machine Learning Predicts Accuracy in Eyewitnesses’ Voices

Author:

Gustafsson Philip U.,Lachmann Tim,Laukka Petri

Abstract

AbstractAn important task in criminal justice is to evaluate the accuracy of eyewitness testimony. In this study, we examined if machine learning could be used to detect accuracy. Specifically, we examined if support vector machines (SVMs) could accurately classify testimony statements as correct or incorrect based purely on the nonverbal aspects of the voice. We analyzed 3,337 statements (76.61% accurate) from 51 eyewitness testimonies along 94 acoustic variables. We also examined the relative importance of each of the acoustic variables, using Lasso regression. Results showed that the machine learning algorithms were able to predict accuracy between 20 and 40% above chance level (AUC = 0.50). The most important predictors included acoustic variables related to the amplitude (loudness) of speech and the duration of pauses, with higher amplitude predicting correct recall and longer pauses predicting incorrect recall. Taken together, we find that machine learning methods are capable of predicting whether eyewitness testimonies are correct or incorrect with above-chance accuracy and comparable to human performance, but without detrimental human biases. This offers a proof-of-concept for machine learning in evaluations of eyewitness accuracy, and opens up new avenues of research that we hope might improve social justice.

Funder

Stockholm University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3