Weathering events recorded in uppermost Hauterivian–lower Barremian clay-dominated continental successions from the NW Iberian Range: climatic vs. tectonic controls

Author:

Laita ElisaORCID,Bauluz Blanca,Aurell Marcos,Bádenas Beatriz,Yuste Alfonso

Abstract

AbstractThe facies and clay mineral study of clay/marl-rich levels from the Torrelapaja Formation (latest Hauterivian–early Barremian, NW Iberian Range, NE Spain) allowed to establish the palaeoclimatic and palaeoenvironmental conditions under they were generated. The muddy levels and pisoids contained therein of two logs were sampled and studied by X-ray diffraction and optical and electron microscopy. A similar mineralogical upwards trend is recorded in both logs, with a decrease in calcite coupled with an increase in quartz and orthoclase content and constant proportions in goethite, hematite, diaspore, anatase, rutile, ilmenite, and clay mineral content. The lower muddy levels have higher kaolinite content than the upper levels, where illitic phases are the dominant clay minerals. Smectite and intergrowths of illitic phases and kaolinite are also detected upwards. The kaolinite and smectite textures indicate an authigenic origin, whereas the illitic phases are former phases acting as a substrate for kaolinite crystallization. Pisoids mineralogy and texture show an in-situ origin, but some are fractured, indicating reworking processes. The mineral association found in the muddy levels is characteristic of oxisols formed under warm and humid conditions. The upward decrease in kaolinite content is coeval with an increase in the illitic phases and quartz content, related to siliciclastic input, but is also coeval with the presence of authigenic smectite. This indicates a decrease in chemical weathering, not fully registered due to the siliciclastic contribution, which was possibly associated with a change to colder, drier conditions during the latest Hauterivian–early Barremian in the studied area.

Funder

European Regional Development Fund

Gobierno de Aragón

Ministerio de Ciencia, Innovación y Universidades

Universidad de Zaragoza

Publisher

Springer Science and Business Media LLC

Subject

Stratigraphy,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3