Digital 3D models of theropods for approaching body-mass distribution and volume
-
Published:2021-08-17
Issue:4
Volume:47
Page:599-624
-
ISSN:1698-6180
-
Container-title:Journal of Iberian Geology
-
language:en
-
Short-container-title:J Iber Geol
Author:
Reolid MatíasORCID, Cardenal Francisco J.ORCID, Reolid JesúsORCID
Abstract
AbstractThe aim of this work is to obtain diverse morphometric data from digitized 3D models of scientifically accurate palaeoreconstructions of theropods from eight representative families. The analysed polyvinyl chloride (PVC) models belong to the genera Coelophysis, Dilophosaurus, Ceratosaurus, Allosaurus, Baryonyx, Carnotaurus, Giganotosaurus, and Tyrannosaurus. The scanned 3D models were scaled considering different body-size estimations of the literature. The 3D analysis of these genera provides information on the skull length and body length that allows for recognition of major evolutionary trends. The skull length/body length in the studied genera increases according with the size of the body from the smallest Coelophysis with a ratio of 0.093 to ratios of 0.119–0.120 for Tyrannosaurus and Giganotosaurus, the largest study theropods. The study of photogrammetric 3D models also provides morphometric information that cannot be obtained from the study of bones alone, but knowing that all reconstructions begin from the fossil bones, such as the surface/volume ratio (S/V). For the studied theropod genera surface/volume ratio ranges from 35.21 for Coelophysis to 5.55 for Tyrannosaurus. This parameter, closely related to the heat dissipation, help in the characterization of the metabolism of extinct taxa. Accordingly, slender primitive forms of the Early Jurassic (i.e. Coelophysis and Dilophosaurus) had relatively smaller skulls and higher mass-specific metabolic rates than the robust large theropods of the Cretaceous (i.e. Giganotosaurus and Tyrannosaurus). This work presents a technique that, when applied to proper dinosaur models, provides extent and accurate data that may help in diverse study areas within the dinosaur palaeontology and palaeobiology.
Publisher
Springer Science and Business Media LLC
Subject
Stratigraphy,Geology
Reference130 articles.
1. Alexander, R. M. (1989). Dynamics of dinosaurs and other extinct giants (pp. 16–26). Columbia University Press. 2. Amiot, R., Buffetaut, E., Lecuyer, C., Wang, X., Boudad, L., Ding, Z., Fourel, F., Hutt, S., Martineau, F., Medeiros, M. A., Mo, J., Simon, L., Suteethorn, V., Sweetman, S., Tong, H., Zhang, F., & Zhou, Z. (2010). Oxygen isotope evidence for semi-aquatic habits among spinosaurid theropods. Geology, 38, 139–142. 3. Amiot, R., Lécuyer, C., Buffetaut, E., Escarguel, G., Fluteau, F., & Martineau, F. (2006). Oxygen isotopes from biogenic apatites suggest widespread endothermy in Cretaceous dinosaurs. Earth and Planetary Science Letters, 246, 41–54. 4. Anderson, J. F., Hall-Martin, A., & Russell, D. A. (1985). Long bone circumference and weight in mammals, birds and dinosaurs. Journal of Zoology (london), 207, 53–61. 5. Bakker, R. T. (1972). Anatomical and ecological evidence of endothermy in dinosaurs. Nature, 238, 81–85.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|