Tool wear monitoring based on an improved convolutional neural network
Author:
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials
Link
https://link.springer.com/content/pdf/10.1007/s12206-023-0332-x.pdf
Reference30 articles.
1. T. Khan, M. Broderick, S. A. Sajid, J. Secker and C. M. Taylor, Development of an enhanced single point milling procedure to screen metalworking cutting fluid performance in terms of tool wear when machining aerospace alloys, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 235 (10) (2021) 1164–1154.
2. Y. Cheng, J. Yang, D. Zuo, X. Song and X. Feng, Tool design and cutting parameters optimization for plunge milling blisk, International Journal of Manufacturing Research, 15 (3) (2020) 266–284.
3. R. A. Patil and S. L. Gombi, Experimental study of cutting force on a cutting tool during machining using inverse problem analysis, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40 (10) (2018) 494.
4. T. S. Liu, Y. Y. Liu and K. D. Zhang, An improved cutting force model in micro-milling considering the comprehensive effect of tool runout, size effect, and tool wear, The International Journal of Advanced Manufacturing Technology (2022) 659–668.
5. K. Gomathi and A. Balaji, Tool condition monitoring of PCB milling machine based on vibration analysis, Materials Today: Proceedings, 45 (P2) (2021) 3386–3397.
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Prediction of Drilling Efficiency for Rotary Drilling Rig Based on an Improved Back Propagation Neural Network Algorithm;Machines;2024-06-26
2. Tool wear status monitoring under laser-ultrasonic compound cutting based on acoustic emission and deep learning;Journal of Mechanical Science and Technology;2024-05
3. Intelligent milling tool wear estimation based on machine learning algorithms;Journal of Mechanical Science and Technology;2024-02
4. Tool state prediction model of Tent-ASO-BP neural network based on multi-feature fusion;Journal of Advanced Mechanical Design, Systems, and Manufacturing;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3