Latency Reversal 2.0: Giving the Immune System a Seat at the Table

Author:

Singh Vidisha,Dashti Amir,Mavigner Maud,Chahroudi AnnORCID

Abstract

Abstract Purpose of Review For most people living with HIV (PLWH), treatment with effective antiretroviral therapy (ART) results in suppression of viremia below the limit of detection of clinical assays, immune reconstitution, reduced immune activation, avoidance of opportunistic infections, and progression to AIDS. However, ART alone is not curative, and HIV persists in a non-replicating, latent form. In this review, we provide a historical perspective on non-specific latency reversal approaches (LRA 1.0) and summarize recent advances in latency reversal strategies that target specific signaling pathways within CD4+ T cells or other immune cells to induce expression of latent HIV (immune-based latency reversal, or LRA 2.0). Recent Findings The HIV reservoir is primarily composed of latently infected CD4+ T cells carrying integrated, replication-competent provirus that can give rise to rebound viremia if ART is stopped. Myeloid lineage cells also contribute to HIV latency in certain tissues; we focus here on CD4+ T cells as a sufficient body of evidence regarding latency reversal in myeloid cells is lacking. The immunomodulatory LRA 2.0 approaches we describe include pattern recognition receptor agonists, immune checkpoint inhibitors, non-canonical NF-kB stimulation, and transient CD8+ lymphocyte depletion, along with promising combination strategies. We highlight recent studies demonstrating robust latency reversal in nonhuman primate models. Summary While significant strides have been made in terms of virus reactivation from latency, initial hopes for latency reversal alone to result in a reduction of infected cells, through viral cytopathic effect or an unboosted immune system, have not been realized and it seems clear that even effective latency reversal strategies will need to be paired with an approach that facilitates immune recognition and clearance of cells containing reactivated virus.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3