Abstract
AbstractAdditive manufacturing and especially the laser-based powder bed fusion (LPBF) with full melting of the powder offers tremendous potential and versatility for manufacturing high quality, complex, precision metal parts. However, for novel powder compositions the LPBF process development is very time consuming and cost intensive due to the layer wise melting and the powder prices. This research work investigates the manufacturing of single and layered multi-material structures in a novel modular lab-scaled LPBF machining system through individual process and material development. The developed system allows the use of different laser sources, optical arrangements, individual sensor and actuator integration. In addition, the modular LPBF system enables the manufacturing of specimens with a minimum amount of powder, individual mixed powder compositions or layered multi-material parts. In an application example, a multi-material specimen made out of stainless steel 316L and Bronze 90/10 was manufactured in alternating layers. For this approach, a parameter study was performed for each material to investigate the influence of the volumetric energy density (VED) on the specimen density, surface flatness and reduced mixing zone formation. Afterwards, optimized parameters were used to demonstrate the feasibility of the system to produce a multi-material layered 316L-Bronze part.
Funder
Bundesministerium für Bildung und Forschung
Hochschule Aalen - Technik und Wirtschaft
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献