Abstract
AbstractMetal powders for the laser powder bed fusion process are usually produced via gas atomization. However, due to the tight particle size distribution required for this application, the yield of the atomization process is low, resulting in a high-powder cost. In this work, atomization process parameters were varied to increase the gas-to-metal ratio to reduce the particle size distribution produced, and therefore increase the yield of the process. As a result, eight powders were produced starting from scrap AISI 136L material at different gas-to-metal ratio values, and the atomization process yield was successfully increased by 50%. First, the eight powders were characterized in terms of powder size, shape distributions, and flowability. Later, all powders were used to produce tensile specimens. The powders produced at higher yield exhibited a larger number of fine particles but slightly lower circularity, particularly in the coarse fraction. Furthermore, powders produced at a high gas-to-metal ratio demonstrated enhanced flowing properties and higher packing density. Consequently, these powders exhibited superior tensile performance, with ultimate tensile strength (UTS) ranging from 651 to 673 MPa and elongation values between 63 and 66%.
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献