Investigation of long short-term memory networks for real-time process monitoring in fused deposition modeling
Author:
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering
Link
https://link.springer.com/content/pdf/10.1007/s40964-022-00371-x.pdf
Reference47 articles.
1. B. Stucker, D. W. Rosen, and I. Gibson, Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing. 2013.
2. Liu C, Le Roux L, Ji Z, Kerfriden P, Lacan F, Bigot S (2020) Machine Learning-enabled feedback loops for metal powder bed fusion additive manufacturing. Procedia Comput Sci 176:2586–2595. https://doi.org/10.1016/j.procs.2020.09.314
3. Gao W et al (2015) The status, challenges, and future of additive manufacturing in engineering. CAD Comput Aided Des 69:65–89. https://doi.org/10.1016/j.cad.2015.04.001
4. M. Mani, B. Lane, A. Donmez, S. Feng, S. Moylan, and R. Fesperman, “Measurement Science Needs for Real-time Control of Additive Manufacturing Powder Bed Fusion Processes,” Natl. Inst. Stand. Technol., no. February, 2015.
5. Grasso M, Colosimo BM (2017) Process defects and in situ monitoring methods in metal powder bed fusion: A review”. Meas. Sci. Technol. 28:2017. https://doi.org/10.1088/1361-6501/aa5c4f
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Predicting 3D printed plastic part properties: A deep learning approach with thermographic and vibration data fusion;Expert Systems with Applications;2024-12
2. An overview of traditional and advanced methods to detect part defects in additive manufacturing processes;Journal of Intelligent Manufacturing;2024-09-02
3. Optimizing FDM process parameters: predictive insights through taguchi, regression, and neural networks;Physica Scripta;2024-05-09
4. Multivariate sensor data analysis for fault detection toward feedback loop-based continuous learning in FFF 3D printer;The International Journal of Advanced Manufacturing Technology;2024-05-08
5. Physics-Informed Machine Learning for metal additive manufacturing;Progress in Additive Manufacturing;2024-04-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3