Effect of TPMS reinforcement on the mechanical properties of aluminium–alumina interpenetrating phase composites

Author:

Santos S.ORCID,Matos C.ORCID,Duarte I.ORCID,Olhero S. M.ORCID,Miranda G.ORCID

Abstract

AbstractTriply Periodic Minimal Surface (TPMS)-based aluminium–alumina Interpenetrating Phase Composites (IPCs) manufactured through the combination of Additive Manufacturing (AM) and investment casting are explored in this study. Multiple alumina TPMS structures (Gyroid, Diamond, and Primitive) with different geometries and volume fractions were designed and fabricated using Digital Light Processing (DLP) AM technology. Afterwards, these ceramic structures were filled with an aluminium alloy via investment casting, uncovering an aluminium–alumina IPCs. A global characterization was performed, including ceramics shrinkage and mass loss; specimens’ morphology; chemical and crystalline characterization; density analysis and mechanical testing. Overall, DLP technology was found effective for producing these highly complex ceramic structures, with high surface quality. The sintered alumina structures presented a relative density of ca. 76.3% and a pseudo-ductile layer-by-layer failure behaviour, with Diamond-based TPMS exhibiting the highest compressive strength. Regarding the IPCs, the addition of aluminium significantly changed the compressive behaviour of the samples, presenting an energy absorption behaviour. The integration of the alumina phase into the aluminium alloy led to an improvement on the compressive offset stress of approximately 6% when compared to the aluminium alloy used. Diamond and Gyroid IPCs demonstrated similar mechanical behaviour and the highest mechanical performance. Graphical Abstract

Funder

Fundação para a Ciência e a Tecnologia

Universidade de Aveiro

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3