Effects of CuCr1Zr contamination on the tensile properties and microstructure of stainless steel 316L produced via laser powder bed fusion

Author:

Tucker Michael R.ORCID,Deillon LéaORCID,Forner Robin,Bambach MarkusORCID

Abstract

AbstractCopper contamination has a negative effect on the tensile properties of certain stainless steel grades due to a weakening of grain boundaries via liquid metal embrittlement. This is especially problematic given current trends in laser powder bed fusion (L-PBF) that elevate contamination risks, such as multi-material processing or the use of recycled materials. As such, it is critical to establish composition limits for use in standard specifications. This study investigates the changes in tensile properties and cracking behavior in stainless steel alloy 316L contaminated with copper alloy CuCr1Zr at concentrations of 0–10 particle percent (pt.%) in horizontal, diagonal, and vertical build orientations. It is found that microcracks are already present at 1 pt.% Cu alloy and increase in density with contamination. The cracks are generally vertically oriented along columnar grain boundaries and are associated with high local Cu content, thus exacerbating the anisotropy of the as-built material. The contamination decreases the elastic modulus, yield strength (YS), ultimate tensile strength (UTS), and uniform elongation, eventually transitioning from ductile to brittle fracture modes. The build orientation relative to the tensile loading axis is shown to be a critical design parameter due to the preferential crack initiation and growth direction. The fracture surfaces at 10 pt.% contamination show regularly spaced, smooth brick-like cleavage patterns that correspond to the columnar grain dimensions. Even so, the measured YS and UTS exceeded the ASTM F3184-16 standard for CuCr1Zr contaminations up to 5 pt.%. As a conservative limit, it is proposed that a maximum content of 1 wt% Cu be specified for L-PBF SS316L.

Funder

Board of the Swiss Federal Institutes of Technology

Swiss Federal Institute of Technology Zurich

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3