Unlocking the potential of low-melting-point alloys integrated extrusion additive manufacturing: insights into mechanical behavior, energy absorption, and electrical conductivity

Author:

Jin LiuchaoORCID,Zhai XiaoyaORCID,Zhang KangORCID,Jiang JingchaoORCID

Abstract

AbstractAdditive manufacturing is a commonly used manufacturing method in complex part fabrication, instant assemblies, part consolidation, mass customization and personalization, on-demand manufacturing, lightweight, and topological optimization due to its advantage of lower costs, flexibility to learn and use, reduced raw material wastage, digital design integration, high efficiency, environmental-friendliness. However, the current metal 3D printing, which is mainly fabricated layer by layer using laser, is expensive to manufacture metal parts. Therefore, in this paper, a low-cost high-quality metal manufacturing process called low-melting-point alloys (LMPAs) integrated extrusion additive manufacturing will be examined. This manufacturing process can fabricate complex metal structures and integrated circuits with simple fused deposition modeling, which is a cost-effective method for producing these objects. LMPAs with different melting points are used for performance comparison to find out the optimized mechanical behavior, energy absorption properties, and electrical conductivity. Our investigation into LMPAs integrated extrusion additive manufacturing has revealed significant findings. Tensile tests conducted on LMPAs with varying melting points have illuminated distinct mechanical behaviors. Notably, lower melting points contribute to increased ductility but reduced stiffness, while higher melting points result in greater stiffness but diminished ductility. These results emphasize the importance of tailoring LMPA selection based on specific application requirements. Furthermore, our examination of lattice and triply periodic minimal surface structures has demonstrated consistent energy absorption properties across different manufacturing temperatures, highlighting the adaptability and versatility of LMPAs for energy absorption applications. Additionally, our electrical conductivity assessments have shown that LMPAs with melting points of $${{47}^{\circ }C}$$ 47 C and $${{120}^{\circ }}\hbox {C}$$ 120 C exhibit higher electrical conductivity, making them suitable for applications requiring good electrical conduction properties. These findings collectively underscore the significance of LMPAs in additive manufacturing, offering valuable insights for material selection and applications in various domains.

Funder

Youth Innovation Key Research Funds for the Central Universities, China

National Natural Science Foundation of China

the Open Project Program of the State Key Laboratory of CAD &CG

the Strategic Priority Research Program of the Chinese Academy of Sciences, China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3