Abstract
AbstractLaser powder bed fusion (LPBF) facilitates the integration of external elements like sensors into workpieces during manufacturing. These embedded components enable e.g. part monitoring, thus being a fundamental application of industry 4.0. This study assesses the feasibility of embedding eddy current (EC) sensors for non-destructive testing (NDT) into SLM components aiming at structural health monitoring (SHM). A reliable embedding process for EC sensors is developed, ensuring the survivability of the sensors for the LPBF process and its harsh conditions. The experiments conducted demonstrate the possibility to use the embedded EC sensor to observe and detect a controlled crack growth. The cracks are realized either with direct EDM cutting or on the course of a fatigue test of CT specimens. The data retrieved by the embedded EC sensors are proven to provide a direct information about the severity of a damage and its evolution over time for both approaches. Thus, supporting the validation of such an innovative and promising SHM concept.
Funder
Innosuisse - Schweizerische Agentur für Innovationsförderung
ETH Zurich
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献