Forced-response characterization of PBF-LB/AlSi10Mg particle dampers with thin and flat cavities

Author:

Westbeld JuliusORCID,von Coburg FabioORCID,Höfer PhilippORCID

Abstract

AbstractPowder Bed Fusion (PBF) enables the production of complex geometries which offer the opportunity to manufacture lightweight, stiffness-optimised or integrally designed components. Although these properties are usually advantageous for the performance in many applications, they pose disadvantages under vibration as they lead to low damped components. These are prone to high vibration amplitudes which result in higher sound radiation and a reduced lifetime. Particle damping can counteract these disadvantages. By including cavities during the design process, unmelted powder remains inside the component after its production. This powder dissipates energy under vibration by inelastic impacts and friction in particle-particle or particle-wall-interactions, increasing the damping characteristics of the component. In this work, additively manufactured AlSi10Mg specimens with cavities are investigated with respect to their damping characteristics by experimental modal analysis. The focus of the investigation is on thin and flat cavities that can be easily integrated into components without adapting the external geometry. The damping characteristics in dependence on excitation amplitude and mode are quantified. The extent to which settling effects of the powder during shaking influence the damping is analysed. The vibration of the specimens is forced by an electrodynamic shaker and their response is measured contactlessly via Scanning Laser Doppler Vibrometry (SLDV). A damping effect of up to 564% depending on the mode, excitation amplitude and specimen can be achieved. In addition, a significant settling effect of the powder which hampers the damping effect is identified by CT scans and modal analysis.

Funder

Zentrum für Digitalisierungs- und Technologieforschung der Bundeswehr

Universität der Bundeswehr München

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3