Recoater crashes during powder bed fusion of metal with laser beam: simulative prediction of interference and experimental evaluation of resulting part quality

Author:

Brenner StefanORCID,Moser MartinORCID,Strauß LeaORCID,Nedeljkovic-Groha Vesna,Löwisch Günther

Abstract

AbstractIn powder bed fusion of metal with laser beam (PBF-LB/M), repetitive melting and solidification of newly added layers lead to thermal stresses and distortions during part build-up. Particularly at critical component features such as unsupported overhangs, super-elevated edges pose a risk in terms of crashes with the recoating system during powder spreading. Damaged recoater lips lead to irregularities in the form of stripes in the powder bed. These local inhomogeneities cause lack-of-fusion porosity and geometric defects on the part surface. However, quantitative information on important quality aspects, such as tensile properties, dimensional accuracy, roughness, and hardness of parts printed under irregular powder bed conditions is scarce. Here, we show that samples from build jobs with recoater crashes maintain their elastic tensile properties and hardness, but lose elongation at break. Finite-element simulations of in-process distortions are used to design an artifact that intentionally damages the silicone rubber lip of the recoater but does not cause machine breakdown. The lowest mean yield strength of the damage-affected samples is 243 MPa, which is still within the material data sheet limits for AlSi10Mg. Therefore, recoater crashes do not necessarily result in rejects, but users must consider the likely presence of porosity.

Funder

dtec.bw® – Zentrum für Digitalisierungs- und Technologieforschung der Bundeswehr

Universität der Bundeswehr München

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering

Reference29 articles.

1. DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, Beese AM, Wilson-Heid A, De A, Zhang W (2018) Additive manufacturing of metallic components-Process, structure and properties. Prog Mater Sci 92:112–224. https://doi.org/10.1016/j.pmatsci.2017.10.001

2. Zaeh MF, Branner G (2010) Investigations on residual stresses and deformations in selective laser melting. Prod Eng Res Devel 4:35–45. https://doi.org/10.1007/s11740-009-0192-y

3. Levkulich NC, Semiatin SL, Gockel JE, Middendorf JR, DeWald AT, Klingbeil NW (2019) The effect of process parameters on residual stress evolution and distortion in the laser powder bed fusion of Ti-6Al-4V. Addit Manuf 28:475–484

4. Scime L, Beuth J (2018) A multi-scale convolutional neural network for autonomous anomaly detection and classification in a laser powder bed fusion additive manufacturing process. Addit Manuf 24:273–286. https://doi.org/10.1016/j.addma.2018.09.034

5. Kleszczynski S, zur Jacobsmühlen J, Sehrt JT, Witt G (2012) Error detection in laser beam melting systems by high resolution imaging. in: 23rd annual international solid freeform fabrication symposium: an additive manufacturing conference. University of Texas at Austin, 975–987

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3