Investigation on a predetermined point of failure for stainless steel 316L pressure loaded components made by laser powder bed fusion through stress analysis and experimental testing

Author:

Ringel BjörnORCID,Schwarz David,Vu Hoang Minh,Meiniger Steffen,Schlick Georg,Seidel Christian,Oechsner Matthias

Abstract

AbstractThe qualification process of pressure vessels in general is subject to governmental restrictions. Thus, introducing additive manufacturing (AM) components to the market is challenging due to incomplete standardization. To increase component safety and trust, predetermined points of failure can be integrated by design using direct manufacturing methods. A predetermined point of failure using a surface notch is one option to avoid dangerous part failure (e.g. explosion) and increase safety. For implementation, a design approach with experimental proof of concept is striven to guide manufacturers and demonstrate the behavior of the material and the component as a whole. Finite element analysis is used for investigations on the influence of surface notch geometries applied to wall structures on structural stress super-elevation. Analytical strength assessment using FKM guideline and experimental validation of PBF-LB/M-manufactured specimen behavior by static axial tensile and burst testing is carried out. Fracture surface and plastic elongation evaluation using light microscopy and 3-D surface scanning clarify the material behavior. The analytical and experimental approval of an integrated predetermined point of failure for static overload is achieved without reducing the maximum burst pressure value. The integration fulfills all theoretical requirements for structural strength. All tested specimens meet the expectations regarding static strength and failure behavior. As expected, component elongation decreases using surface notches for failure provocation. Results lead to a proposed guideline for the application of an integrated predetermined point of failure by the use of a surface notch.

Funder

AiF Projekt

Fraunhofer-Institut für Gießerei-, Composite und Verarbeitungstechnik IGCV

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3