Reactive formation of C3N4 as a by-product of AISI 1070 parts produced by laser powder bed fusion in N2 atmosphere

Author:

Gatto Andrea,Tognoli Emanuele,Groppo Riccardo,Cabibbo Marcello,Gatto Maria LauraORCID,Sabbatini Simona,Mengucci Paolo

Abstract

AbstractIn metal additive manufacturing (AM), inert gases are traditionally used to achieve a controlled atmosphere and mitigate the effects of residual reactive gases. However, the interaction between gases and laser processes, particularly in reactive laser powder bed fusion (RL-PBF) technology, offers the possibility of opening up new avenues for material synthesis. In this experimental work, the authors observed the presence of C3N4 in the residual powder during the manufacture of AISI 1070 steel parts by L-PBF, indicating a reactive process occurred during parts production. This investigation revealed the formation in the working chamber of a waste product containing C3N4 carbon nitride, due to the reaction between the carbon released from the steel and the nitrogen in the chamber. Remarkably, despite carbon depletion, the final product of AISI 1070 steel complies with the specifications of use. Hence, the L-PBF machine was modified to allow black powder sampling from various locations in the chamber. Authors attempted to enhance the production of the C3N4 material by increasing the SED up to 7143 J/mm2 to sublimate a pure graphite rod and concurrently manufacture parts in AISI 1070, in a nitrogen atmosphere. The results obtained at higher SED values showed that in both cases (graphite rod or AISI 1070 steel) a C3N4 compound in the black powder is formed in the investigated atmosphere by reaction of nitrogen atoms with the carbon atoms vaporized by the laser beam. Thus, the study highlights the novel achievement of synthesizing carbon nitride as a high-value by-product while producing functional AISI 1070 steel parts via L-PBF through reaction with nitrogen atmosphere.

Funder

Università Politecnica delle Marche

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3