Analysing the effect of defects on stress concentration and fatigue life of L-PBF AlSi10Mg alloy using finite element modelling

Author:

Afroz L.ORCID,Inverarity S. B.,Qian M.,Easton M.,Das R.

Abstract

Abstract Additive manufacturing (AM) is a developing manufacturing technology, which provides excellent attributes compared to other manufacturing techniques. However, one of the critical challenges is the presence of defects that hinder the mechanical properties of the parts, particularly the fatigue life. Experimental understanding of fatigue is a cumbersome process. Therefore, numerical prediction based on specified conditions (such as porosity and applied load) can be an alternative to experimental analysis at the design stage of AM parts. In this study, elastic–plastic finite element analysis (FEA) is performed to obtain the stress distribution around pores, and their resultant effect on fatigue life for L-PBF (laser powder bed fusion) produced AlSi10Mg alloy samples. The stress field is calculated for both single and multiple pore models, where stress concentration is evaluated as a function of the pore’s location and its size. It is found that both pore location and size affect the stress field; however, location effects dominate over pore size. For the same remote applied stress level, the stress concentration around the pore increases with an increase in pore size, and the local maximum stress occurs near the pores that are closest to the surface. The current study also evaluates the relative effect of porosity fraction, average pore size, and location. It is found that the magnitude and sensitivity of stress concentration are hierarchically controlled by porosity location, pore size, and porosity density. A multi-scale finite element (FE) model is proposed based on inherent porosity data measured using Computed Tomography (CT) to predict overall fatigue life. The fatigue cycles are calculated using the rainflow counting algorithm in FE Safe using the stress–strain data obtained from the proposed FEA model. Using the proposed model, it is possible to generate S–N curves for any loading condition for a given porosity condition (porosity density and average pore size). The S–N curve results obtained from the FE model are compared to the experimental observations. The predicted fatigue life shows approximately 5% error with experimental results at high stress loading conditions. However, the proposed model overpredicts the fatigue life at low stress loading by almost 30%.

Funder

Royal Melbourne Institute of Technology

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3