Surface roughness reduction in electron beam powder bed fusion additive manufacturing of super duplex stainless steel 2507: investigating optimisation techniques and face orientation-dependent irregularities

Author:

Roos StefanORCID,Rännar Lars-Erik

Abstract

AbstractThe use of additive manufacturing in metals by powder bed fusion via electron beam (PBF-EB) is increasing for fabricating high-quality parts meeting industrial standards. However, high surface roughness poses a consistent challenge in PBF-EB. This study investigates two novel approaches to optimise surface roughness for a given machine and powder combination. Using machine control software’s recently introduced research mode functionality, we develop customised beam control code to effectively explore a vast parameter space. Additionally, we explored the impact of beam travel direction and spot morphology on surface roughness. Line-melt-based contours were explored by specimen manufacturing with layer-wise parameter change, whilst spot-melting-based samples were built using a full factorial design of experiments with four factors at three levels. Initial sample characterisation was done using a stylus-based contact profilometer, followed by detailed evaluation using focus variation microscopy. Results reveal that increasing beam power and spot energy exacerbate surface roughness. We also find that a well-defined energy distribution at the spot's edge contributes to smoother surfaces. Whilst the influence of beam travel direction on surface roughness remains uncertain, our findings underscore the importance of parameter selection in achieving optimal results. By adjusting contouring parameters, we achieve a vertical roughness of Ra17.7 ± 0.9 (Sa 21.6), significantly lower than in the current literature. These findings advance our understanding of surface roughness optimisation in PBF-EB and offer practical insights for improving part quality in industrial applications. By harnessing tailored beam control strategies, manufacturers can enhance the capabilities of additive manufacturing technologies in producing metal components.

Funder

Stiftelsen för Kunskaps- och Kompetensutveckling

Mid Sweden University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3