Coupled thermo-mechanical numerical model to minimize risk in large-format additive manufacturing of thermoplastic composite designs

Author:

Bhandari SunilORCID,Lopez-Anido Roberto A.

Abstract

AbstractThe collapse of deposited thermoplastic composite material under self-weight presents a risk in large-format extrusion-based additive manufacturing. Two critical processing parameters, extrusion temperature and deposition rate, govern whether a deposited layer is stable and bonds properly with the previously deposited layer. Currently, the critical parameters are determined via a trial-and-error approach. This research work uses a simplified physics-based numerical simulation to determine a suitable combination of the parameters that will avoid the collapse of the deposited layer under self-weight. The suitability of the processing parameters is determined based on the maximum plastic viscous strains computed using a sequentially coupled thermo-mechanical numerical model. This computational tool can efficiently check if a combination of temperature and extrusion rate causes layer collapse due to self-weight, and hence minimize the manufacturing risk of large-format 3D-printed parts.

Funder

U.S. Department of Transportation

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering

Reference61 articles.

1. Srivastava M, Rathee S (2021) Additive manufacturing: recent trends, applications and future outlooks. Progr Addit Manuf 7:261–287

2. Love LJ, Duty C (2015) Cincinnati big area additive manufacturing (BAAM), Oak Ridge, TN

3. Kunc V, Hassen AA, Lindahl J, Kim S, Post B, Love L (2017) Large scale additively manufactured tooling for composites. In: Proceedings of 15th Japan international SAMPE symposium and exhibition

4. Love L (2015) 3D printed shelby cobra. Oak Ridge National Lab (ORNL), Oak Ridge

5. Post BK, Chesser PC, Lind RF, Roschli A, Love LJ, Gaul KT, Sallas M, Blue F, Wu S (2019) Using big area additive manufacturing to directly manufacture a boat hull mould. Virtual Phys Prototyping 14(2):123–129

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3