Developing auto process mapping technique for powder bed fusion using an electron beam

Author:

Aoyagi KentaORCID,Ono Manabu,Yanagihara Keiji,Wakoh Kimio,Chiba Akihiko

Abstract

AbstractPowder bed fusion using an electron beam offers promise for manufacturing intricate metal parts. However, process optimization for defect-free parts proves costly and time-consuming. Many studies have investigated process optimization and defect prediction methods, but automating process optimization remains a significant challenge. This study developed and validated software to automatically determine i + 1-th trial conditions based on the results of the i-th trial experiment. Two algorithms were implemented and evaluated:—a dynamic programming approach and a selecting boundary conditions approach. The latter method considerably reduced the time required to determine the next conditions compared to the former approach. Considering a process mapping experiment requiring real-time trial condition determination during the build, we chose the selecting boundary conditions approach. The selecting boundary conditions approach was used to conduct a process mapping experiment to validate the software for constructing a process map using machine learning. The model and hyperparameters were optimized using sequential model-based global optimization with a tree-structured Parzen estimator. The process map underwent four updates using the developed software to determine i + 1-th trial conditions and construct a process map from the results of the i-th trial experiment.

Funder

New Energy and Industrial Technology Development Organization

Japan Society for the Promotion of Science

Cooperative Research and Development Center for Advanced Materials, Institute for Materials Research, Tohoku University

Center for Computational Materials Science, Institute for Materials Research, Tohoku University

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3