Abstract
AbstractThe mechanical properties of 3D printed materials produced with additive manufacturing depend on the printing process, which is controlled by several tuning parameters. This paper focuses on Binder Jet technology and studies the influence of printing resolution, activator percentage, droplet mass, and printing speed on the compressive and flexural strength, as well as on the Young’s modulus of the bulk printed material. As the number of tests required using a one factor at a time approach is not time efficient, a Design of Experiments approach was applied and optimal points in the 4-dimensional parameter space were selected. Then Sobol’ sensitivity indices were calculated for each mechanical property through polynomial chaos expansion. We found that the mechanical properties are primarily controlled by the binder content of the bulk material, namely printing resolution and droplet mass. A smaller dependence on the activator percentage was also found. The printing speed does not affect the mechanical properties studied. In parallel, curing of the specimens at 80–115 °C for 30–120 min increases their strength.
Funder
HORIZON EUROPE European Research Council
Swiss Federal Institute of Technology Zurich
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering
Reference49 articles.
1. Wohlers T (2014) Wohlers report. Wohlers Assoc Inc., Rome
2. Shahrubudin N, Lee TC, Ramlan R (2019) An overview on 3D printing technology: technological, materials, and applications. Procedia Manuf 35:1286–1296. https://doi.org/10.1016/j.promfg.2019.06.089
3. ACF on AM Technologies (2009) Standard terminology for additive manufacturing-general principles and terminology. ASTM International
4. Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R (2017) Polymers for 3D printing and customized additive manufacturing. Chem Rev 117:10212–10290. https://doi.org/10.1021/acs.chemrev.7b00074
5. Stansbury JW, Idacavage MJ (2016) 3D printing with polymers: challenges among expanding options and opportunities. Dent Mater 32:54–64. https://doi.org/10.1016/j.dental.2015.09.018
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献