Online monitoring of direct laser metal deposition process by means of infrared thermography

Author:

D’Accardi E.ORCID,Chiappini F.,Giannasi A.,Guerrini M.,Maggiani G.,Palumbo D.,Galietti U.

Abstract

AbstractDirect laser metal deposition (LMD–DED) is an additive manufacturing (AM) process that is used to build up and repair high-quality metal components. It works by overlapping layers of powder material and melting them with a laser. To get a stable process without defects and to reach, at the same time, high mechanical properties, a robust assessment and control of the process parameters, and above all of their combination, is required. The ideal goal is to assure the online control, to stop or correct the process in case of unexpected anomalies. In this work, a robust online monitoring of the laser metal deposition (LMD–DED) process based on the use of infrared thermography was developed and proposed. After choosing the suitable process parameters, a customized design of experiments (DOE) was set, and the statistical analysis of different thermal features was carried out to develop the most robust models that correlate them with the input process parameters (laser power, scanning speed, and powder flow rate). The proposed procedure was based on the extraction of different thermal features from suited regions of interest (ROI), performing statistical analyses by means of analysis of variance (ANOVA) and building regression models to correlate the process parameters with the thermal behavior. The obtained results demonstrated the possibility to control the process by means of the chosen thermal features, independent of the position of the ROI. Moreover, the possibility to use the models to detect typical AM defects, and anomalies, online directly during the process, has been proved and verified by destructive macrographs carried out on the manufactured coupons.

Funder

Politecnico di Bari

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3