Abstract
AbstractLaser powder bed fusion has become one of the major techniques within metal additive manufacturing, especially when delicate structures and high geometric accuracy are concerned. Lately, the awareness of the material-specific macroscopic anisotropy has risen and led to widespread investigations on the static mechanical strength. However, little is known about the fracture behavior of the layer-wise fabricated metal components and their affinity of crack propagation between consecutive layers, which is particularly important for aluminium–silicon alloys containing embrittled zones in double-irradiated areas. A recent study indicated that there is a significant drop in fracture toughness in case the crack growth direction is parallel to the layering. To investigate this matter further and to shed light on the fracture toughness behavior in the range of a 0°–45° angle offset between the crack growth direction relative to the layering, notched samples with varying polar angles were subjected to mode I fracture toughness testing. Our results indicate that the fracture toughness is an almost-stable characteristic up to a mismatch of about 20° between the crack propagation path and the layering, at which point the fracture toughness decreases by up to 10%.
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering
Reference18 articles.
1. Hitzler L, Merkel M, Hall W, Öchsner A (2018) A review of metal fabricated with laser- and powder-bed based additive manufacturing techniques: process, nomenclature, materials, achievable properties, and its utilization in the medical sector. Adv Eng Mater 20:1700658
2. DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, Beese AM, Wilson-Heid A, De A, Zhang W (2018) Additive manufacturing of metallic components—process, structure and properties. Prog Mater Sci 92:112–224
3. Zhang D, Sun S, Qiu D, Gibson MA, Dargusch MS, Brandt M, Qian M, Easton M (2018) Metal alloys for fusion-based additive manufacturing. Adv Eng Mater 20:1700952
4. Hitzler L, Hirsch J, Heine B, Merkel M, Hall W, Öchsner A (2017) On the anisotropic mechanical properties of selective laser melted stainless steel. Materials 10:1136
5. Hitzler L, Hirsch J, Tomas J, Merkel M, Hall W, Öchsner A (2019) In-plane anisotropy of selective laser melted stainless steel: the importance of the rotation angle increment and the limitation window. Proc Inst Mech Eng Part L J Mater Des Appl 233:1419–1428
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献