Interpretable machine learning model integrating clinical and elastosonographic features to detect renal fibrosis in Asian patients with chronic kidney disease

Author:

Chen Ziman,Wang Yingli,Ying Michael Tin Cheung,Su Zhongzhen

Abstract

Abstract Background Non-invasive renal fibrosis assessment is critical for tailoring personalized decision-making and managing follow-up in patients with chronic kidney disease (CKD). We aimed to exploit machine learning algorithms using clinical and elastosonographic features to distinguish moderate-severe fibrosis from mild fibrosis among CKD patients. Methods A total of 162 patients with CKD who underwent shear wave elastography examinations and renal biopsies at our institution were prospectively enrolled. Four classifiers using machine learning algorithms, including eXtreme Gradient Boosting (XGBoost), Support Vector Machine (SVM), Light Gradient Boosting Machine (LightGBM), and K-Nearest Neighbor (KNN), which integrated elastosonographic features and clinical characteristics, were established to differentiate moderate-severe renal fibrosis from mild forms. The area under the receiver operating characteristic curve (AUC) and average precision were employed to compare the performance of constructed models, and the SHapley Additive exPlanations (SHAP) strategy was used to visualize and interpret the model output. Results The XGBoost model outperformed the other developed machine learning models, demonstrating optimal diagnostic performance in both the primary (AUC = 0.97, 95% confidence level (CI) 0.94–0.99; average precision = 0.97, 95% CI 0.97–0.98) and five-fold cross-validation (AUC = 0.85, 95% CI 0.73–0.98; average precision = 0.90, 95% CI 0.86–0.93) datasets. The SHAP approach provided visual interpretation for XGBoost, highlighting the features’ impact on the diagnostic process, wherein the estimated glomerular filtration rate provided the largest contribution to the model output, followed by the elastic modulus, then renal length, renal resistive index, and hypertension. Conclusion This study proposed an XGBoost model for distinguishing moderate-severe renal fibrosis from mild forms in CKD patients, which could be used to assist clinicians in decision-making and follow-up strategies. Moreover, the SHAP algorithm makes it feasible to visualize and interpret the feature processing and diagnostic processes of the model output. Graphical Abstract

Funder

Hong Kong Polytechnic University

Publisher

Springer Science and Business Media LLC

Subject

Nephrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3