Abstract
AbstractHow can computational social science (CSS) methods be applied in nonprofit and philanthropic studies? This paper summarizes and explains a range of relevant CSS methods from a research design perspective and highlights key applications in our field. We define CSS as a set of computationally intensive empirical methods for data management, concept representation, data analysis, and visualization. What makes the computational methods “social” is that the purpose of using these methods is to serve quantitative, qualitative, and mixed-methods social science research, such that theorization can have a solid ground. We illustrate the promise of CSS in our field by using it to construct the largest and most comprehensive database of scholarly references in our field, the Knowledge Infrastructure of Nonprofit and Philanthropic Studies (KINPS). Furthermore, we show that through the application of CSS in constructing and analyzing KINPS, we can better understand and facilitate the intellectual growth of our field. We conclude the article with cautions for using CSS and suggestions for future studies implementing CSS and KINPS.
Funder
IU Lilly Family School of Philanthropy, the Stead Family
UT Austin LBJ School, PRI Research Award
UT Austin LBJ School, Stephen H. Spurr Centennial Fellowship
VU University Amsterdam, Dutch Charity Lotteries
UT Austin RGK Center, Academic Development Funds
Publisher
Springer Science and Business Media LLC
Subject
Strategy and Management,Public Administration,Sociology and Political Science,Business and International Management
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献