Abstract
AbstractWe discuss the singularity structure of Kahan discretizations of a class of quadratic vector fields and provide a classification of the parameter values such that the corresponding Kahan map is integrable, in particular, admits an invariant pencil of elliptic curves.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Reference21 articles.
1. Bedford, E., Kim, K.: On the degree growth of birational mappings in higher dimensions. J. Geom. Anal. 14(4), 567–596 (2004)
2. Bedford, E., Kim, K.: Periodicities in linear fractional recurrences: degree growth of birational surface maps. Michigan Math. J. 54(3), 647–670 (2006)
3. Carstea, A.S., Takenawa, T.: A note on minimization of rational surfaces obtained from birational dynamical systems. J. Nonlinear Math. Phys. 20(suppl. 1), 17–33 (2013)
4. Celledoni, E., McLachlan, R.I., Owren, B., Quispel, G.R.W.: Geometric properties of Kahan’s method. J. Phys. A 46(2), 12 pp. (2013)
5. Celledoni, E., McLachlan, R.I., McLaren, D.I., Owren, B., Quispel, G.R.W.: Integrability properties of Kahan’s method. J. Phys. A 47(36), 20 pp. (2014)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献