Abstract
AbstractLet d be a positive integer. We show a finiteness theorem for semialgebraic $$\mathscr {RL}$$
RL
triviality of a Nash family of Nash functions defined on a Nash manifold, generalising Benedetti–Shiota’s finiteness theorem for semialgebraic $$\mathscr {RL}$$
RL
equivalence classes appearing in the space of real polynomial functions of degree not exceeding d. We also prove Fukuda’s claim, Theorem 1.3, and its semialgebraic version Theorem 1.4, on the finiteness of the local $${\mathscr {R}}$$
R
types appearing in the space of real polynomial functions of degree not exceeding d.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Reference29 articles.
1. Artin, M., Mazur, B.: On periodic points. Ann. Math. 81, 82–99 (1965)
2. Benedetti, R., Shiota, M.: Finiteness of semialgebraic types of polynomial functions. Math. Z. 208(4), 589–596 (1991)
3. Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 36. Springer, Berlin (1998)
4. Coste, M.: An Introduction to Semialgebraic Geometry. Dottorato di Ricerca in Matematica, Università di Pisa (2000)
5. Coste, M., Ruiz, J.M., Shiota, M.: Global problems on Nash functions. Rev. Mat. Complut. 17(1), 83–115 (2004)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Bi-Hölder equivalence of real analytic functions;Research in the Mathematical Sciences;2024-03-07