Abstract
AbstractGiven a complex connected reductive Lie group G with a maximal torus $$H\subset G$$
H
⊂
G
, Tits defined an extension $$W_G^{\mathrm{T}}$$
W
G
T
of the corresponding Weyl group $$W_G$$
W
G
. The extended group is supplied with an embedding into the normalizer $$N_G(H)$$
N
G
(
H
)
such that $$W_G^{\mathrm{T}}$$
W
G
T
together with H generate $$N_G(H)$$
N
G
(
H
)
. In this paper we propose an interpretation of the Tits classical construction in terms of the maximal split real form $$G(\mathbb {R})\subset G$$
G
(
R
)
⊂
G
, which leads to a simple topological description of $$W^{\mathrm{T}}_G$$
W
G
T
. We also consider a variation of the Tits construction associated with compact real form U of G. In this case we define an extension $$W_G^U$$
W
G
U
of the Weyl group $$W_G$$
W
G
, naturally embedded into the group extension $$\widetilde{U}:=U\,{\rtimes }\, \Gamma $$
U
~
:
=
U
⋊
Γ
of the compact real form U by the Galois group $$\Gamma ={\mathrm{Gal}}(\mathbb {C}/\mathbb {R})$$
Γ
=
Gal
(
C
/
R
)
. Generators of $$W^U_G$$
W
G
U
are squared to identity as in the Weyl group $$W_G$$
W
G
. However, the non-trivial action of $$\Gamma $$
Γ
by outer automorphisms requires $$W^U_G$$
W
G
U
to be a non-trivial extension of $$W_G$$
W
G
. This gives a specific presentation of the maximal torus normalizer of the group extension $${\widetilde{U}}$$
U
~
. Finally, we describe explicitly the adjoint action of $$W_G^{\mathrm{T}}$$
W
G
T
and $$W^U_G$$
W
G
U
on the Lie algebra of G.
Funder
SPS
Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Reference11 articles.
1. Adams, J., He, X.: Lifting of elements of Weyl groups. J. Algebra 485, 142–165 (2017). arXiv:math/1608.00510 [math.RT]
2. Borel, A., Tits, J.: Groupes réductifs. Inst. Hautes Études Sci. Publ. Math. 27, 55–150 (1965)
3. Brown, K.S.: Cohomology of Groups. Graduate Texts in Mathematics, vol. 87. Springer, New York (1982)
4. Chevalley, C.: Classification des Groupes Algébriques semi-simples. In: Cartier, P. (ed.) Collected Works, vol. 3. Springer, Berlin (2005)
5. Curtis, M., Wiederhold, A., Williams, B.: Normalizers of maximal tori. In: Hilton, P. (ed.) Localization in Group Theory and Homotopy Theory, and Related Topics. Lecture Notes in Mathematics, vol. 418, pp. 31–47. Springer, Berlin (1974)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献