Quadrature for quadrics

Author:

Gustafsson Björn

Abstract

AbstractWe make a systematic investigation of quadrature properties for quadrics, namely integration of holomorphic functions over planar domains bounded by second degree curves. A full understanding requires extending traditional settings by allowing domains which are multi-sheeted, in other words domains which really are branched covering surfaces of the Riemann sphere, and in addition usage of the spherical area measure instead of the Euclidean. The first part of the paper discusses two different points of view of real algebraic curves: traditionally they live in the real projective plane, which is non-orientable, but for their role for quadrature they have to be pushed to the Riemann sphere. The main results include clarifying a previous theorem (joint work with V. Tkachev), which says that a branched covering map produces a domain with the required quadrature properties if and only it extends to be meromorphic on the double of the parametrizing Riemann surface. In the second half of the paper domains bounded by ellipses, hyperbolas, parabolas and their inverses are studied in detail, with emphasis on the hyperbola case, for which some of the results appear to be new.

Funder

Royal Institute of Technology

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3