Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Reference17 articles.
1. Annala, T.: Bivariant derived algebraic cobordism. J. Algebraic Geom. 30(2), 205–252 (2021)
2. Baum, P., Fulton, W., MacPherson, R.: Riemann–Roch for singular varieties. Inst. Hautes Études Sci. Publ. Math. 45, 101–145 (1975)
3. Berthelot, P., Grothendieck, A., Illusie, L., et al. (eds.): Théorie des Intersections et Théorème de Riemann–Roch. Séminaires de Géométrie Algébrique du Bois-Marie 1966/67. Springer Lecture Notes in Mathematics, vol. 225. Springer, Berlin (1971)
4. Borel, A., Serre, J.-P.: Le théorème de Riemann–Roch. Bull. Soc. Math. France 86, 97–136 (1958)
5. Brasselet, J.-P.: Existence des classes de Chern en théorie bivariante. In: Analysis and Topology on Singular Spaces, vol. II, III. Astérisque, vol. 101–102, pp. 7–22. Société Mathématique de France, Paris (1983)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献