Abstract
AbstractLet $$\phi $$
ϕ
be a self-map of the symmetric group $$S_\Omega $$
S
Ω
acting on a countable set $$\Omega $$
Ω
. We show in an elementary fashion that if $$\phi $$
ϕ
has the property that $$\sigma \tau $$
σ
τ
is conjugate to $$\phi (\sigma )\phi (\tau )$$
ϕ
(
σ
)
ϕ
(
τ
)
for every choice of $$\sigma ,\tau $$
σ
,
τ
in $$S_\Omega $$
S
Ω
, then it is necessarily an automorphism or an antiautomorphism of $$S_\Omega $$
S
Ω
. As a corollary to this result, the so-called 2-local automorphisms of $$S_\Omega $$
S
Ω
are also described.
Funder
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
Publisher
Springer Science and Business Media LLC
Reference12 articles.
1. Dixon, J.D., Mortimer, B.: Permutation Groups. Graduate Texts in Mathematics, vol. 163. Springer, New York (1996)
2. Gyenti, B., Molnár, L.: On local automorphisms of some quantum mechanical structures of Hilbert space operators. New York J. Math. 26, 1444–1472 (2020)
3. Contemporary Mathematics;O Hatori,2019
4. Janusz, G., Rotman, J.: Outer automorphisms of $$S_6$$. Amer. Math. Monthly 89(6), 407–410 (1982)
5. Kadison, R.V.: Local derivations. J. Algebra 130(2), 494–509 (1990)