Abstract
AbstractWe investigate the possibilities of global versions of Chang’s Conjecture that involve singular cardinals. We show some $$\mathrm{ZFC} $$
ZFC
limitations on such principles and prove relative to large cardinals that Chang’s Conjecture can consistently hold between all pairs of limit cardinals below $$\aleph _{\omega ^\omega }$$
ℵ
ω
ω
.
Publisher
Springer Science and Business Media LLC
Reference25 articles.
1. Abraham, U., Magidor, M.: Cardinal arithmetic. In: Foreman, M., Kanamori, A. (eds.) Handbook of Set Theory. Vols. 1, 2, 3, pp. 1149–1227. Springer, Dordrecht (2010)
2. Ben-Neria, O., Lambie-Hanson, C., Unger, S.: Diagonal supercompact Radin forcing. Ann. Pure Appl. Log. 171(10), # 102828 (2020)
3. Bukovský, L.: Iterated ultrapower and Prikry’s forcing. Comment. Math. Univ. Carolinae 18(1), 77–85 (1977)
4. Cummings, J., Foreman, M., Magidor, M.: Squares, scales and stationary reflection. J. Math. Log. 1(1), 35–98 (2001)
5. Dehornoy, P.: Iterated ultrapowers and Prikry forcing. Ann. Math. Logic 15(2), 109–160 (1978)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献