Abstract
AbstractWe prove an equilibrium stressability criterion for trivalent multidimensional frameworks. The criterion appears in different languages: (1) in terms of stress monodromies, (2) in terms of surgeries, (3) in terms of exact discrete 1-forms, and (4) in Cayley algebra terms.
Funder
FWF Austrian Science Fund
International Centre for Mathematical Sciences
Publisher
Springer Science and Business Media LLC
Reference21 articles.
1. Bobenko, A.I., Suris, Yu.B.: Discrete Differential Geometry. Graduate Studies in Mathematics, vol. 98. American Mathematical Society, Providence (2008)
2. Connelly, R.: Tensegrities and global rigidity. In: Senechal, M. (ed.) Shaping Space, pp. 267–278. Springer, New York (2013)
3. Connelly, R., Whiteley, W.: Second-order rigidity and prestress stability for tensegrity frameworks. SIAM J. Discrete Math. 9(3), 453–491 (1996)
4. Crapo, H., Whiteley, W.: Autocontraintes planes et polyèdres projetés. I. Le motif de base. Struct. Topol. 20, 55–78 (1993). (Dual French–English text)
5. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献