Abstract
AbstractIn p-adic analysis one can find an analog of the classical gamma function defined on the ring of p-adic integers. In 1975, Morita defined the p-adic gamma function $$\Gamma _p$$
Γ
p
by a suitable modification of the function $$n \mapsto n!$$
n
↦
n
!
. In this note we prove that for any given prime number p the Morita p-adic gamma function $$\Gamma _p$$
Γ
p
is differentially transcendental over $${\mathbb {C}}_p(X)$$
C
p
(
X
)
. The main result is an analog of the classical Hölder’s theorem, which states that Euler’s gamma function $$\Gamma $$
Γ
does not satisfy any algebraic differential equation whose coefficients are rational functions.
Funder
Akademia Górniczo-Hutnicza im. Stanislawa Staszica
Publisher
Springer Science and Business Media LLC
Reference10 articles.
1. Crespo, T., Hajto, Z.: Algebraic Groups and Differential Galois Theory. Graduate Studies in Mathematics, vol. 122. American Mathematical Society, Providence (2011)
2. Crespo, T., Hajto, Z.: Real Liouville extensions. Commun. Algebra 43(5), 2089–2093 (2015)
3. Crespo, T., Hajto, Z., Mohseni, R.: Real Liouvillian extensions of partial differential fields. SIGMA Symmetry Integrability Geom. Methods Appl. 17, 095 (2021)
4. Crespo, T., Hajto, Z., van der Put, M.: Real and $$p$$-adic Picard–Vessiot fields. Math. Ann. 365(1–2), 93–103 (2016)
5. Dwork, B.: A note on the $$p$$-adic gamma function. In: Study Group on Ultrametric Analysis, 9th year: 1981/82, No. 3 (Marseille, 1982), Exp. No. J5, 10 pp. Inst. Henri Poincaré, Paris (1983). http://eudml.org/doc/91897