Abstract
AbstractThe gauge group of a principal G-bundle P over a space X is the group of G-equivariant homeomorphisms of P that cover the identity on X. We consider the gauge groups of bundles over $$S^4$$
S
4
with $${{\textrm{Spin}}}^{{\textrm{c}}}(n)$$
Spin
c
(
n
)
, the complex spin group, as structure group and show how the study of their homotopy types reduces to that of $${{\textrm{Spin}}}(n)$$
Spin
(
n
)
-gauge groups over $$S^4$$
S
4
. We then advance on what is known by providing a partial classification for $${{\textrm{Spin}}}(7)$$
Spin
(
7
)
- and $${{\textrm{Spin}}}(8)$$
Spin
(
8
)
-gauge groups over $$S^4$$
S
4
.
Funder
Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Reference58 articles.
1. Albanese, M., Milivojević, A.: $$\text{Spin}^h$$ and further generalisations of spin. J. Geom. Phys. 164, Art. No. 10, 174 (2021)
2. Andrade Claudio, M.H., Spreafico, M.: Homotopy type of gauge groups of quaternionic line bundles over spheres. Topology Appl. 156(3), 643–651 (2009)
3. Atiyah, M.F., Bott, R.: The Yang–Mills equations over Riemann surfaces. Philos. Trans. Roy. Soc. London Ser. A 308(1505), 523–615 (1983)
4. Atiyah, M.F., Bott, R., Shapiro, A.: Clifford modules. Topology 3(suppl. 1), 3–38 (1964)
5. Booth, P., Heath, P., Morgan, C., Piccinini, A.: Remarks on the homotopy type of groups of gauge transformations. C. R. Math. Acad. Sci. Canada 3(1), 3–6 (1981)