Abstract
AbstractWe give an explicit formula for the Deligne pairing for proper and flat morphisms $$f:X\rightarrow S$$
f
:
X
→
S
of schemes, in terms of the determinant of cohomology. The whole construction is justified by an analogy with the intersection theory on non-singular projective algebraic varieties.
Funder
Istituto Nazionale di Alta Matematica “Francesco Severi”
Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Reference22 articles.
1. Beauville, A.: Complex Algebraic Surfaces. London Mathematical Society Student Texts, 2nd edn. Cambridge University Press, Cambridge (1996)
2. Berthelot, P., Grothendieck, A., Illusie, L. (directeurs): Théorie des intersections et théorème de Riemann–Roch. Lecture Notes in Mathematics. Springer, Berlin (1971)
3. Biswas, I., Schumacher, G., Weng, L.: Deligne pairing and determinant bundle. Electron. Res. Announc. Math. Sci. 18, 91–96 (2011)
4. Boucksom, S., Eriksson, D.: Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry. Adv. Math. 378, 107501 (2021)
5. Cartier, P.: Sur un théorème de snapper. Bull. Soc. Math. France 88, 333–343 (1960)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献