Abstract
Abstract
Background
Phytophthora cinnamomi is an Oomycetes associated with soil, this Oomycete is one of the most destructive species of Phytophthora, being responsible for the decline of more than 5000 ornamental, forest, or fruit plants. It can secrete a class of protein NPP1 (Phytophthora necrosis inducing protein 1), responsible for inducing necrosis in leaves and roots of plants, leading to their death.
Objective
This work will report the characterization of the Phytophthora cinnamomi NPP1 gene responsible for the infection of Castaneasativa roots and will characterize the mechanisms of interaction between Phytophthora cinnamomi and Castanea sativa, by gene silencing NPP1 from Phytophthora cinnamomi mediated by RNAi.
Methods and results
For silencing a part of the coding region of the NPP1 gene, was placed in the sense and antisense directions between an intron and ligated to the integrative vector pTH210. Cassette integration was confirmed by PCR and sequencing on the hygromycin-resistant Phytophthora cinnamomi transformants. Transformants obtained with the silenced gene was used to infect Castanea sativa.
Conclusions
Plants infected with these transformants showed a great reduction in disease symptoms, confirming iRNA as a potential alternative biological tool in the study of molecular factors, and in the control and management of Phytophthora cinnamomi.
Funder
Instituto Politécnico de Bragança
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Molecular Biology,General Medicine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献