Mechanisms of intermittent theta-burst stimulation attenuating nerve injury after ischemic reperfusion in rats through endoplasmic reticulum stress and ferroptosis

Author:

Shen Xin-Ya,Zhang Xing-Yu,Han Ping-Ping,Zhao Yi-Ning,Xu Guo-Hui,Bi Xia

Abstract

Abstract Background Repetitive transcranial magnetic stimulation (rTMS) exerts neuroprotective effects early in cerebral ischemia/reperfusion (I/R) injury. Intermittent theta-brust stimulation (iTBS), a more time-efficient modality of rTMS, improves the efficiency without at least decreasing the efficacy of the therapy. iTBS elevates cortical excitability, and in recent years it has become increasingly common to apply iTBS to patients in the early post-IS period. However, little is known about the neuroprotective mechanisms of iTBS. Endoplasmic reticulum stress (ERS), and ferroptosis have been shown to be involved in the development of I/R injury. We aimed to investigate the potential regulatory mechanisms by which iTBS attenuates neurological injury after I/R in rats. Methods Rats were randomly divided into three groups: sham-operated group, MCAO/R group, and MCAO/R + iTBS group, and were stimulated with iTBS 36 h after undergoing middle cerebral artery occlusion (MCAO) or sham-operated. The expression of ERS, ferroptosis, and apoptosis-related markers was subsequently detected by western blot assays. We also investigated the mechanism by which iTBS attenuates nerve injury after ischemic reperfusion in rats by using the modified Neurological Severity Score (mNSS) and the balance beam test to measure nerve function. Results iTBS performed early in I/R injury attenuated the levels of ERS, ferroptosis, and apoptosis, and improved neurological function, including mNSS and balance beam experiments. It is suggested that this mode of stimulation reduces the cost per treatment by several times without compromising the efficacy of the treatment and could be a practical and less costly intervention.

Funder

Natural General Project of Pudong New Area Science and Technology and Economy Committee

Key Discipline of Pudong New Area Health Commission Discipline Construction Plan

Shanghai University of Medicine & Health Sciences Intelligent Neurorehabilitation Clinical Research Center

Featured Clinical Discipline Project of Pudong New Area Health Commission

Joint Research Project of Health Planning and Scientific Research of Pudong New District Health Committee

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3