Application of real-time PCR for the identification of the endangered species Galemys pyrenaicus through faecal samples

Author:

Ripa Adriana,Díaz-Caballero José A.,Palacios-González María Jesús,Espinosa Antonio,García-Zapata Juan Luis,Fernández-Garcia José Luis

Abstract

Abstract Background Currently, many micromammals are important targets for study. The endangered Galemys pyrenaicus is an outstanding example. Globally, their populations have suffered a substantial decline in last 20 years. In the surveyed area, the capture of desman is legally forbidden due to the high conservation concerns. Reason by non-invasive sampling through faeces is proposed for its monitoring. Furthermore, the confusion between faeces from desman and Mediterranean water shrews must be considered. Thus, the aim of this study was focused on developing RT-PCR assays to determine the presence of Galemys pyrenaicus and N. a. anomalus from non-invasive samples. Methods and results The study was conducted in the mountains of the System Central of Extremadura (Spain). A total of 186 samples were collected from 2018 to 2021 by experts where historically reported and/or our previous studies confirmed their presence. RT-PCR assays using hydrolysis probes were designed to detect genetic material from both desman and Mediterranean water shrews and its specificity was confirmed. The reliability of the method was further assessed by PCR sequencing of mitochondrial Cyb and d-loop, resulting fully compatible with the RT-PCR approach. Intraspecific phylogenetic relationship was reported to improve knowledge about mtDNA variability in the desman from the Central System. Conclusions We demonstrated that RT-PCR gives a gold opportunity to further map the species using faeces which minimizes disturbance and reports both population status and individual presence. Cost-effective RT-PCR combined with field-collected faeces allows us to better investigate the full range of occurrence of the species.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3