Estrogen receptor α K303R mutation reorganizes its binding to forkhead box protein A1 regions and induces chromatin opening

Author:

Nakadai Tomoyoshi,Yang Liying,Kumegawa Kohei,Maruyama Reo

Abstract

Abstract Background Estrogen receptor alpha (ERα) is a frequently mutated gene in breast cancer (BC). While many studies have investigated molecular dysregulation by hotspot mutations at Y537 and D538, which exhibit an estrogen-independent constitutively active phenotype, the functional abnormalities of other mutations remain obscure. The K303R mutation in primary invasive BC has been implicated with endocrine resistance, tumor size, and lymph node positivity. However, the impact of the K303R mutation on the cell epigenome is yet unknown. Methods and results We introduced the K303R ERα mutant in ERα-negative MDA-MB-453 cells to monitor ERα-dependent transactivation and to perform epigenomic analyses. ATAC-seq and ChIP-Seq analyses indicated that both wild-type (WT) and the K303R mutant associated with Forkhead box (Fox) protein family motif regions at similar rates, even without an ERα-binding sequence, but only the K303R mutant induced chromatin opening at those regions. Biochemical analyses demonstrated that the WT and the K303R mutant can be tethered on DNA by FoxA1 indirectly, but only the K303R/FoxA1/DNA complex can induce associations with the nuclear receptor cofactor 2 (NCOA2). Conclusions These findings suggest that the K303R mutant induces chromatin opening at the Fox binding region through the FoxA1-dependent associations of the K303R mutant to NCOA2 and then probably disrupts the regulation of Fox-target genes, resulting in K303R-related BC events.

Funder

Japan Society for the Promotion of Science, KAKENHI

Platform for Advanced Genome Science, JSPS KAKENHI

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3