Genetic polymorphism of drug metabolism enzymes (GSTM1, GSTT1 and GSTP1) in the healthy Malian population

Author:

Kassogue YayaORCID,Diakite Brehima,Kassogue Oumar,Konate Issa,Tamboura Kadidiatou,Diarra Zoumana,Dehbi Hind,Nadifi Sellama,Traore Cheick Bougadari,Dao Sounkalo,Doumbia Seydou,Dolo Guimogo

Abstract

Abstract Glutathione S-transferase genes, known to be highly polymorphic, are implicated in the process of phase II metabolism of many substrates, including xenobiotics, anticancer and anti-infective drugs. The detoxification activity is linked to individual genetic makeup. Therefore, the identification of alleles and genotypes in these genes within a population may help to better design genetic susceptibility and pharmacogenetic studies. We performed the present study to establish the frequencies of the GSTM1, GSTT1, and GSTP1 c. 313A > G (rs1695) polymorphisms in 206 individuals of the Malian healthy population. GSTM1 and GSTT1 were genotyped by using multiplex polymerase chain reaction, whereas genotypes of GSTP1 were identified by polymerase chain reaction followed by restriction fragment length polymorphism. The frequencies of GSTM1-null and GSTT1-null genotypes were respectively 24.3 and 41.3%. The observed genotype frequencies for GSTP1 were 25.73% homozygous wild-type AA, 49.03% heterozygous AG and 25.24% homozygous mutant GG. The frequency of GSTP1-A allele was 50.24% versus 49.76% for the GSTP1-G allele. The distribution of these three genes was homogeneous between men and women (p > 0.05). We found no statistical association between the presence of a particular profile of GSTM1 or GSTT1 with the genotypes of GSTP1 (p > 0.05). Nevertheless, we noticed that the majority of the individuals harboring the GSTM1-present or the GSTT1-present harbor also the GSTP1-AG genotype. In addition, the triple genotype GSTM1-present/GSTT1-present/AG was the most frequent with 25.2%. Our findings will facilitate future studies regarding genetic associations of multifactorial diseases and pharmacogenetic, thus opening the way to personalized medicine in our population.

Funder

European and Developing Countries Clinical Trials Partnership

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Molecular Biology,General Medicine

Reference43 articles.

1. Orrenius S, Thor H, Jernström B (2008) The influence of inducers on drug-metabolizing enzyme activity and on formation of reactive drug metabolites in the liver. Environ Chem Enzym Funct Hum Dis 76:25–39

2. Jancova P, Anzenbacher P, Anzenbacherova E (2010) Phase II drug metabolizing enzymes. Biomed Pap 154:103–116

3. Dimitrova N, Zamudio JR, Jong RM, Soukup D, Resnick R, Sarma K et al (2017) Public access NIH public access. PLoS ONE 32:736–740

4. Pajaud J, Kumar S, Rauch C, Morel F, Aninat C (2012) Regulation of signal transduction by glutathione transferases. Int J Hepatol 2012:1–11

5. Arruda VR, Lima CS, Grignoli CR, de Melo MB, Lorand-Metze I, Alberto FL et al (2001) Increased risk for acute myeloid leukaemia in individuals with glutathione S-transferase mu 1 (GSTM1) and theta 1 (GSTT1) gene defects. Eur J Haematol 66:383–388

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3