Study on the association of the microstructure and bone metabolism in the osteoporotic femoral head

Author:

Wang Cheng,Wang Peng,Li Feng,Li Yang,Zhao Minwei,Feng Hui,Meng Haoye,Li Junyang,Shi Peng,Peng Jiang,Tian HuaORCID

Abstract

Abstract Background We compared the bone microstructure and metabolism of the femoral heads in patients with osteoporosis (OP) and non-OP patients to investigate the pathologic mechanism of OP and guide clinical treatment. Methods and results From January 2020 to June 2021, we obtained femoral head samples from 30 patients undergoing hip replacement due to femoral neck fracture. All patients were women aged approximately 67 to 80 years (mean age, 74 years). According to the dual-energy X-ray results, the femoral head samples were divided into the OP (T< − 2.5) and non-OP (T > − 1.5) groups. Microcomputed tomography scanning, bone metrology analysis, hematoxylin and eosin staining, and Masson’s trichrome staining were used to compare the local bone trabecular microstructure changes. Quantitative reverse transcription PCR was performed to identify changes in the osteogenesis-related genes and the osteoclast-related genes in specific regions to reflect osteogenic and osteoclastic activities. Femoral heads with OP showed significant changes in the local bone microstructure. Bone density, bone volume fraction, and the number and thickness of the bone trabeculae decreased. Local bone metabolism was imbalanced in the areas with microstructural changes in femoral heads with OP, with increased osteoclast activity and decreased osteoblast activity. Conclusions Deterioration of bone microstructure is closely related to abnormal bone metabolism associated with the activity of osteoblasts and osteoclasts in osteoporotic femoral heads. Promoting bone formation by improving local bone metabolism, enhancing osteogenic activity and inhibiting osteoclast activity may be a promising way of preventing local OP and osteoporotic fractures.

Funder

National Natural Science Foundation of China

International Science and Technology Cooperation Programme

Bethune Charitable Foundation

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3