Himalayan Tectonic Belt: Morlet Wavelet Variation and Seismic Harmony

Author:

Xu Yebang,Burton Paul W.

Abstract

AbstractMorlet wavelet analysis is a method of studying the periodic spectrum of non-stationary physical signals and is applied to the Himalayan Tectonic Belt to explore whether there is any seismic periodicity, and to explore the possibility of harmony or commonality of properties among the seismic activities of different zones. The earthquake sequence during 1951–2016 with magnitudes M ≥ 6.0 is analysed. Wavelet non-periodicity for the Centre zone suggests a non-uniform spatial–temporal distribution of earthquake movement between plates which may relate with the rare great earthquakes, while the periodicities for the west and east zones may suggest the concurrence with the adjustment of the tectonic movement of the east- and west-end regions of the Himalayan Tectonic Belt relative to its central core. These three zones collectively form the Himalayan Tectonic Belt. This contains a periodicity of about five years of seismic activity that tests successfully with a 95% confidence statistic. Borrowing from the concept of musical harmony, this is the significant seismic harmonic which reflects the Belt’s pervasive tectonic stress and an overall harmony of continent–continent plate convergence. Morlet wavelet analysis also reveals the Himalayan Tectonic Belt and the Pamir–Hindu Kush Tectonic Zone to be engaged as a big new family: the Himalayan Tectonic Belt Plus. It is demonstrated that this new whole also has seismic harmony with the common property again being the 5-year periodicity. This indicates a unified structure of pervading active stress and seismic harmony permeating the overall seismicity.

Funder

the Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics

Reference31 articles.

1. Benioff, H. (1951). Crustal strain characteristics derived from earthquake sequences. Transactions of the American Geophysical Union, 32(4), 508–514.

2. Bollinger, L., Perrier, F., Avouac, J.-P., Sapkota, S., Gautam, U., & Tiwari, D. R. (2007). Seasonal modulation of seismicity in the Himalaya of Nepal. Geophysical Research Letters, 34, L08304. https://doi.org/10.1029/2006GL029192

3. Bracewell, R. (1965). The Fourier transform and its applications. McGraw-Hill.

4. Bracewell, R. N. (2000). The Fourier transform and its applications (3rd ed.). McGraw-Hill.

5. Bragato, P. L. (2017). Periodicity of strong seismicity in Italy: Schuster spectrum analysis extended to the destructive earthquakes of 2016. Pure and Applied Geophysics., 174, 3725–3735.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3